Mengenal Bilangan Ber-Pangkat


Pernah dengar bilangan berpangkat? Atau sudah hafal bilangan berpangkat??? taukah kalian tentang definisi bilangan berpangkat??

Yuuuk kita pelajari disini…

Bilangan berpangkat adalah perkalian berulang dari bilangan tersebut. Yang sering dan mudah kita hafal adalah bilangan berpangkat dua dan berpangkat tiga. Bilangan ber-pangkat tidak hanya bilangan berpangkat dua dan berpangkat tiga tapi bilangan berpangkat bisa berbentuk apa saja. Nah … untuk mempelajari materi-materi lanjutan, baik materi bilangan pangkat bulat positif, bilangan bulat negatif maupun bilangan berpangkat pecahan(akar), kita harus tau lebih dalam tentang definisi perpangkatan itu sendiri !

Let’s check this out …

Pangkat Bulat Positif

a^n=\underset{sebanyak\;\; n}{a\times a\times a\times...\times a\times a}

contoh :

1.  10^2=10\times 10=100

2.  3^3=3\times 3\times3= 27

3.  (-5)^4=(-5)\times (-5)\times (-5)\times (-5)= 625     ………

Pangkat Bulat Negatif

\begin{align*}a^{-n} & = & \frac{1}{a^n}\\ & = & \underset{sebanyak\;\; n}{\frac 1a\times \frac 1a\times \frac 1a\times...\times \frac 1a} \end{align*}

Contoh :

1.    2^{-5}=\frac{1}{2^5}=\frac 12\times \frac 12\times \frac 12\times \frac 12\times \frac 12=\frac{1}{32}

2.    (-3)^{-3}=\frac{1}{(-3)^3}=\frac {1}{-3}\times \frac{1}{-3}\times \frac{1}{-3}=-\;\frac{1}{27}

3.    \frac{1}{10000}=\frac{1}{10^4}=10^{-4}

4.    7a^{-5}=7.\frac{1}{a^5}=\frac{7}{a^5}

hmmmmm…..kalau sudah tahu prinsip perpangkatan, coba bikin tabel perpangkatan supaya mudah dalam menghafal, ok..???!!  Kenapa dihapal???? agar mudah menghitungnya tidak usah menghitungnya lagi, karena bilangan ini sering kita jumpai dalam kehidupan sehari-hari …..

Sekarang kita lihat aturan dalam perpangkatan yuuuuuuk…

Aturan Pangkat

a^0=1

a^n.a^m=a^{n+m}

\frac{a^n}{a^m}=a^{n-m}

(a^n)^m=a^{n.m}

(a.b)^n=a^n.b^n

\left ( \frac ab \right )^n=\frac{a^n}{b^n}

Mari kita lihat contoh berikut ini….
1.    2^3.2^2=2^5=32

2.    \frac{5^6}{5^{10}}=5^{-4}=\frac{1}{625}

3.    (2^2)^3=2^6=64

4.    (-2a)^3=(-2)^3.a^3=-8a^3

5.    \left (\frac 5q \right )^3=\frac{5^3}{q^3}=\frac{125}{q^3}

Contoh soal-soal dan pembahasan aturan pangkat mari kita simak yang berikut ini :

Nyatakan dalam bentuk pangkat positif yang paling sederhana !!!!!

\begin{align*}1.\;\;(-5a^{-2}b^3)^2&=&(-5)^2(a^{-2})^2(b^3)^2\\&=&25a^{-4}b^6\\&=&\frac{25b^6}{a^4}\end{align*}

\begin{align*}2.\;\left (\frac{2}{a^3} \right )^{-4} & = & \frac{1}{\left (\frac{2}{a^3} \right )^{4}}\\ & = & \left ( \frac{a^3}{2} \right )^4\\ & = & \frac{a^{12}}{2^4}\\ & = & \frac{a^{12}]}{16}\end{align*}

\begin{align*}3.\;\;\frac{3p^2q^{-5}}{ab^4}\times \frac{a^3b^{-2}}{12p^{-3}q^7}&=&\frac{3{\color{Red} a^3}{\color{DarkBlue} b^{-2}}{\color{DarkGreen} p^2}{\color{Purple} q^{-5}}}{12{\color{Red} a}{\color{DarkBlue} b^4}{\color{DarkGreen} p^{-3}}{\color{Purple} q^7}}\\&=&\frac 14.{\color{Red} a}^{3-1}.{\color{DarkBlue} b}^{-2-4}.{\color{DarkGreen} p}^{2-(-3)}.{\color{Purple} q}^{-5-7}\\&=&\frac 14.a^2.b^{-6}.p^5.q^{-12}\\&=&\frac{a^2p^5}{4b^6q^{12}}\end{align*}

Latihan yang lain,  jangan sungkan-sungkan untuk mencoba yaaaaaa….

cayoooooo…

sumber : http://www.meetmath.com/311122-materi-bilangan-pangkat.html

Iklan

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s